
FastNeRF: Accelerating Ray Rendering of Neural Radiance Fields

Trevor Houchens Joshua Pierce Brandon Li Daniel Kostovetsky

Abstract

Utilizing Neural Radiance Fields (NeRF) for the rep-
resentation of scenes with complex geometry and appear-
ance achieves impressive results with regard to photorealis-
tic view synthesis. Because NeRF represents scenes as con-
tinuous volumetric functions, it additionally holds an ad-
vantage over other 3D formats such as point clouds, voxel
grids, and meshes in that its memory footprint is an order
of magnitude smaller. We seek to investigate optimizations
on the originally proposed NeRF paper, specifically related
to rendering.

1. Introduction
Rendering photorealistic perspectives of a scene from a

free viewpoint has numerous applications and has posed a
long-standing challenge in computer graphics. Recent work
by Mildenhall et al. [4] has outlined a method for implicitly
representing a scene as a learned radiance function. In this
work, a neural network (or radiance field) is trained to re-
turn a color and density given a spatial location and spheri-
cal direction from within the 3D scene. Using this function,
views of the learned scene are rendered from novel cam-
era angles via a volumetric ray-sampling technique. NeRF
produces detailed, photorealistic renderings without suffer-
ing the cubic memory complexity of competing voxel-based
methods. Furthermore, the inclusion of viewing direction
among the network’s inputs enables it to precisely handle
non-Lambertian reflection. In total, NeRF was a promising
innovation with potential applications in graphics, virtual
reality, and robotics.

Although its results are impressive, NeRF’s biggest
drawback from a practical perspective is inference time:
volumetric rendering requires querying the network at
scores of samples along each ray for each rendered pixel.
As a result, a single high-definition image can take over 30
seconds to render on a GPU, making NeRF incompatible
with real-time applications.

We propose multiple efficiency improvements to the
NeRF rendering pipeline. Our methods seek to decrease
the required number of network queries and correspond-
ing rendering time by more efficiently allocating samples
within the 3D scene. This entails two distinct approaches:

i) sparsely selecting rays and using the resulting densities to
estimate the ideal sampling locations of adjacent rays; ii) ef-
ficiently allocating samples along each ray by bounding the
network queries near an estimation of the scene’s surface.
Across these approaches we explore the trade-off between
rendering speed and resolution.

2. Background
Conceptually, the task of novel view synthesis entails

aligning a geometric transformation with the underlying
details of the scene. Prior approaches to this task have
spanned several methods of scene representations, includ-
ing: voxel grids, point clouds and multi-plane images.
These approaches balance trade-offs between memory de-
mands, computation time, and resolution. Voxels [5] offer
quicker rendering times, however struggle with a cubic in-
crease in memory demand and pre-defined limits on resolu-
tion. Point clouds [1] have notably been used in large-scale
scene reconstructions, however their methods are highly de-
pendent on the quality of structure-from-motion techniques
and do not offer the same level of photo-realism. Multi-
plane images [6] allow for fast rendering, however are lim-
ited in the angles by which novel views can be synthesized
and also have substantial space requirements.

By comparison, implicit scene representations offer
a memory-compact, continuous function that can render
novel views from any angle. By modelling both the source
and angle of light radiance and over-fitting to a single scene,
NeRF is able to generate detailed, novel views with realistic
specular effects. The NeRF’s volumetric rendering method
underlies its efficacy towards this end. When rendering a
view, each pixel corresponds to a ray passing through the
scene. To render the corresponding color of a given pixel,
NeRF queries the radiance field for colors and densities
along this ray. The resulting colors and densities are com-
posited via a volumetric rendering technique, where colors
from any point sampled along the ray are weighted by a
factor of their density and the lack of accumulated densities
from the points preceding them on the ray.

Ĉ(r) =

N∑
i=1

1− 1
e(σiδi)

e(
∑i−1
j=1 σjδj)

ci (1)

In this equation for calculating the color, Ĉ. of ray r, N rep-

1



resents the number of points sampled along the ray, σi rep-
resents the density of point i, and δi represents the distance
between the adjacent point on the ray. At training time, the
rendered pixel colors are compared to ground-truth colors
of training images, thus teaching NeRF a spatial distribu-
tion of color-densities that comport with the multiple train-
ing angles. In order to improve the focus of sampling near
the surface, NeRF uses this weighted ratios of densities and
accumulated densities to distribute a second pass of sam-
pling along each ray:

wi =
1− 1

e(σiδi)

e(
∑i−1
j=1 σjδj)

, ŵi =
wi∑Nc
j=1 wj

(2)

Thus, a second pass of sampling is distributed along the
ray by the piecewise-constant probability density function
given by ŵi.

Provided the success of NeRF in rendering photo-
realistic views, recent research has sought to address the
limitation of its substantial rendering time. Recent work by
Liu et al. [3] outline a method of constructing a sparse vox-
elization of the 3D scene and learning local radiance fields
within each voxel. This entails applying local feature rep-
resentations to the corners of each voxel and then using lo-
cation in the voxel to learn a local radiance field from the
trilinear interpolation of these voxel features. By tightly
bounding the sampling of the radiance fields within the
voxel space around the scene’s surface, Neural Sparse Voxel
Fields avoids sampling empty space and achieves speed-ups
by a factor of ten compared to NeRF.

More recent work by Lindell et al. [2] takes a more fun-
damental approach towards improving NeRF’s volumentric
rendering. The authors define an integral network which
will be used to return the definite integrals of estimated den-
sity along each ray, rather than densities from a single point.
The structure of the corresponding gradient network is de-
rived from the integral network. This gradient network is
trained to generate colors and densities in a similar manner
as NeRF. However at testing, the assembled integral net-
work is used to evaluate definite integrals along each ray,
thus obviating the need to estimate the integrated density
with numerous samples per ray. This direct estimation of
ray integrals results in a speed-up by factor of ten.

3. Methods
Our approach to speeding up NeRF fundamentally relies

on improving the allocation of our sampling. By more ef-
ficiently querying the radiance network near the surface of
the scene, fewer samples and less computation would be re-
quired to render a novel view. Towards this end, we explore
two different approaches: i) sparsely selecting rays to ren-
der and using their resulting densities to interpolating the
sampling location for adjacent rays; ii) extracting an esti-

Figure 1. To demonstrate the limits in efficiency and resolution in
relation to sampling location, we compare the result of the full 64-
sample, first-pass volumetric rendered image (left) to the rendered
result of only one-sample per ray (right), where each sample is lo-
cated at the surface of the scene as estimated from the densities of
the left-image. The right-image required just 2% of the rendering
time.

mated shape of the scene to bound the sampling depth of
rays near the scene’s surface.

3.1. Interpolated Ray Rendering

The regular NeRF rendering process is a two pass ap-
proach. First, each ray is sampled 64 times, and the den-
sities at these sampled points are used to inform a second
sampling. Our Interpolated Rendering approach relies on
the assumption that the depth of a scene at one pixel can be
estimated by the depths of its neighbors. With Interpolated
Rendering we segment the novel view into tiles of equally-
sized pixel blocks. The traditional first pass sampling is
used to acquire density probability distributions and colors
for the upper left-hand pixel of each block. We can then use
the density bi-linear interpolation of the four neighboring
density distributions to infer the density of rays that weren’t
sampled in the first pass.

Figure 2. If the above image is a view of a scene, we may choose
to render rays for the blue pixels only during the first round of
sampling. Using our interpolated rendering, the white pixels can
be sampled according to a probability distribution that is the bi-
linear interpolation of the density distributions of the neighboring
four pixels during the second round.

3.2. Point Cloud Sampling

As opposed to Interpolated Rendering, Point Cloud Sam-
pling renders all the rays of a novel view, however this ap-
proach guides sampling depths to be focused more closely
on the estimated scene surface. The first step in the process

2



is to generate a point cloud of the scene using the training
images and their estimated depths (NeRF provides depth es-
timates). The point cloud produced by lifting these points
into 3D space gives us an estimate of the surface of the
scene. Now when rendering a novel view, we can trans-
form the shape’s point cloud into the corresponding nor-
malized device coordinates. By iterating over the points in
the point cloud, we can map their corresponding depth es-
timates to the aligned pixel of the 2D view being rendered.
By tracking the largest and smallest depth values for each
pixel, we can bound our ray-sampling between the closest
and farthest point-cloud depths. If no points correspond to
a given pixel, its bounds are set to (0,1) which represent the
near plane to infinity in world space, and are the values nor-
mally used for rendering. If only a single point, or very few
points, are mapped to a specific pixel, the bound on their
depth may be very narrow (or possibly a single point). To
relax the bounds, we group bounds across pixels and also
modify the bounds by a constant factor, ε, which we set to
0.10 in our code.

near[i, j] = min(near[i− 2 : i+ 2, j − 2 : j + 2])− ε (3)

far[i, j] = max(far[i− 2 : i+ 2, j − 2 : j + 2]) + ε (4)

Near and far bounds are clipped to be within the range
(0,1). During the rendering process, rays are sampled be-
tween their near and far bound rather than across the whole
range of (0,1).

Figure 3. The left picture shows the far depth bound of the fern
scene before it is modified by a local max or ε. The right picture
shows the near bound of the fern scene after these modifications.
Note that the near bound is darker in color indicating lower values.
The squares are pixels that had no points from the point cloud in
their field of view, so the near and far values were set to 0 and 1.

4. Results
4.1. Interpolated Rendering

We explored the results of the interpolated rendering
technique across increasing levels of interpolation; in other
words, across increasingly sparse initial samples rates per
rendered scene. The most aggressive rate of interpolation
was sampling one out of every 182 rays. The resulting ren-
dered image is shown in Figure 4 and demonstrates con-
vincing, photo-realistic results. None-the-less, NeRF did

Figure 4. Results from interpolated rendering, where only one out
of every 182 rays relied on sampling the entire ray

report a marginally higher PSNR (shown in Fig 5). While
increasing the level of interpolation, the PSNR slightly de-
creased. Figure 5 makes it appear that NeRF significantly

Figure 5. The first chart here shows the effect of sampling rate on
the PSNR of the rendered image. The red dot represents NeRF
performance, and the blue line represents NeRF with interpolated
rendering, for different sparsities of rendered rays in the first pass.
The second chart is similar, but running time is shown instead of
the sampling rate

outperformed our interpolated rendering version, but this is
mostly due to the scaling on the y-axis. Our technique ac-
tually had a very similar PSNR to NeRF, and managed to

3



render in only 80-85% of the time that it took NeRF. In-
terestingly, Figure 5 also shows that the time gain associ-
ated with sparser samplings quickly drops off. This is likely
due to the fact that sample sparsity must increase quadrati-
cally, which means that most of the gains occur during the
first few increases in sparsity (e.g. going from sampling 1

1
points to 1

4 points saves more time than going from 1
36 to 1

49
points).

4.2. Point Cloud Sampling

As shown in Figure 8, rendering with NeRF using point
clouds achieves an output image from a generated pose
virtually indistinguishable from the output of the original
NeRF model. However, we found that using the point cloud
made the model slower, so we chose to use smaller versions
of the full point cloud, produced by rendering fewer rays
for each of the training images. After selecting our point

Figure 6. A comparison of the running time and PSNRs of renders
using different sized point clouds. The two smallest clouds were
both the fastest and the most accurate so we choose to use the
second smallest cloud (downsampled x16).

cloud, we compared our rendering performance with it to
our rendering performance using standard NeRF. When us-
ing point cloud sampling, we found that the model achieved
similar PSNR to NeRF, but had a constant increase in time,
which we attributed to the linear time processing of the
point cloud. Our expectation was that as the number of sam-
ples taken along a ray decreased, the PSNR for our render-
ing method would remain higher, as it could better target the
surfaces in the scene. However, the PSNR closely followed
that of the NeRF model. One explanation for this is that
since we chose such a sparse point cloud and took measures
to loosen the bounds, we effectively sampled the original
(0,1) range, but just added a point cloud pre-processing step
that slowed down the network.

5. Discussion
Interpolated rendering proved to be a useful technique

for rendering NeRF, but it was limited in the performance
benefit that it provided. The render time was reduced by

Figure 7. A comparison of the running time and PSNR of NeRF
and our Point Cloud Sampling Nerf. Each vertex represents a
different number of samples per ray, up to the standard number
(64,128)

Figure 8. A side-by-side comparison of the output of rendering
NeRF without (left) and with (right) point cloud sampling with 32
samples per ray

about 15%, and it is unlikely that similar improvements
could be achieved in the same manner since the first pass
of sampling only comprises 25% of the total sampling used
to render an image.

Our efforts to use knowledge of the scene geometry to
inform the sampling did not lead to any performance gains.
This can be attributed to the speed and performance tradeoff
that one makes when choosing the size of a point cloud.
With too small a point cloud, we can’t bound the depth at
every pixel in the new view; and with too large a point cloud
we spend time iterating over many points. It is likely that
some other method could be used to estimate the depth of
the scene with greater effect.

Our implementation of depth estimation using a point
cloud could be further explored and potentially improved.
Improving the propagation of values across pixels during
the local max/min phase could lead to good bounds even
with smaller point clouds. While our interpolated rendering
provided better improvements, depth estimation is a more
promising area for future work.

4



References
[1] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski.

Building rome in a day. In: ICCV (2009). 1
[2] David B. Lindell, Julien N. P. Martel, and Gordon Wetzstein.

Autoint: Automatic integration for fast neural volume render-
ing. Under Review: (2020). 2

[3] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and
Christian Theobalt. Neural sparse voxel fields. Under Review:
(2020). 2

[4] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view synthe-
sis. In: ECCV (2020). 1

[5] Steven M. Seitz and Charles R. Dyer. Photorealistic scene
reconstruction by voxel coloring. In: CVPR (1997). 1

[6] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,
and Noah Snavely. Stereo magnification: Learning view
synthesis using multiplane images. In: ACM Trans. Graph.
(2018). 1

5


