
SmartFat: A Fully Automatic Timing System with Hip Number Recognition for
Track Races

Trevor Houchens, Eliot Laidlaw
Brown University

10 May 2019

Figure 1. Cross-sectional finish line image

1. Introduction

The goal of this project was to create a fully automatic
timing (FAT) system for timing and judging the finished of
track and field races. We attempted to build a system that
would:

1. Output a cross-sectional image like the one shown in
Figure 1 that shows where in time each runner finished.
In the image below, every column of pixels is the finish
line at a certain time. The horizontal axis represents
time, so the runner on the right finished first and the
one on the left finished last.

2. Output a list of the hip numbers (in track races each
runner has a sticker on their hip with a large number on
it for timing/identification purposes) in the race in the
order that they finished

This project is inspired by our own running and track
careers. Both of us are leaders of the Brown Running Club
and we have both competed in track meets and organized a
track meet. The precision and accuracy gained from an FAT
system is necessary for high level competition, but existing
systems are extremely expensive, so we set out to create our
own.

2. Related Work
Unfortunately, the vast majority of existing FAT systems

are proprietary and we were unable to get insight into the
inner workings for our own project. Instead, we used the
techniques learned in class to build our system from scratch
based on our own intuition and with the guidance of Haoze,
our TA.

Our system is written in Python and relies on a num-
ber of libraries: Numpy, FFmpeg, PyAV, OpenCV2, SciPy,
the SciKit Image Library, Pillow, and the SciKit Learning
Library.

We collected all the data for our project ourselves. At a
track meet, we used a slow motion phone camera to take
several videos of the finish line as runners were passing by.

3. Method
The first thing we tackled was finding the time that each

runner finished and using that information to construct the
cross-sectional finish line image (Figure 1).

To accomplish this, we first loop over the video, frame
by frame. At each frame, we take the absolute difference
between the image and image of the background (the first
frame in the video usually). This gives us an image with
near-zero values everywhere except where there is a runner,
as shown in Figure 2.

We then convolve this image with a vertical h x 1 filter
of 1’s that tapers to 0.33 at the bottom and is then divided
by h. This tapering is because runners in lane 1 (the lane
closest to the camera) appear larger than runners in the other
lanes, and therefore their extremities are similar size to the
entire torso of a runner in a farther lane. The runners in lane
1, however, are lower in the image, so the tapering reduces
this issue. The result of this convolution is a w x 1 image
that is essentially the difference image compressed down to
a single row. We then set everything in the row that is above
a certain threshold to 1 and everything below to 0.

By taking the row from every frame and stacking them up,
we get a very useful image, shown in the first panel of Figure
4. In this image, time is represented in the vertical direction,

1



Figure 2. Video frame; background image; resulting subtraction

Figure 3. Stacked rows; edge detection; non-max suppression; line
fitting

and the white stripes represent the runners passing through
the frame. Steeper lines represent faster runners (or runners
closer to the camera), and the y-coordinates of the endpoints
of each line represent the frame at which the runner entered
and exited the frame.

The most useful piece of information to be extracted
from this image, however, is the intersection of the top edge
of each line with the finish line, which is a vertical line
approximately halfway through the image horizontally. The
top edge of the runner’s line represents the front of the runner
(because the chest is what matters in track races) and the
y-coordinate of this intersection point is the frame at which
the runner crosses the finish line.

To get these intersection points, first we convolve the
image with an edge detecting filter that is 15 x 1 with the
first 11 entries being 1’s and the last 4 being −1’s (divided
by 15). This results in the second image in Figure 4. By
using non-maximum suppression row by row, we get the
third image. We then use RANSAC to fit the lines seen in
the fourth panel. The RANSAC process works as follows:

Figure 4. A two that has been modified to be classified by an MNIST
trained CNN

1. Choose n points from the output of the non-maximum
suppression.

2. Fit a line to those points

3. Count the number of inliers

4. If that number is greater than some threshold, accept
that line as a runner, and remove all inliers from the
array of remaining points.

5. If there are still several points left to be fit and we’ve
looped less than some number of times, go to step 1
and repeat.

We can now easily calculate the frame at which each
runner crossed the finish line and use that to label a cross-
sectional image. The cross-sectional image is created by
taking the vertical h x 1 strip of pixels at the finish line of
every frame and horizontally concatenating them.

The second part of the project was to detect the hip num-
bers of each runner. We begin this process by clipping the
image of each runner’s finish to a region around their hip
(shown in Figure 5). To clip the image horizontally (extract
a vertical stripe that contains the runner) we use the same w
x 1 rows of pixels that were stacked to make the images in
Figure 4. We use the section of this row that is 1’s near the
finish line to clip the image. We then use the same process on
the other axis, convolving our vertical stripe (minus the back-
ground) with a horizontal filter of 1’s and using where that
column is high to extract a horizontal stripe from our vertical
stripe where the runner is. The result is an image clipped to
the runner’s body. We then take only the middle 40% of this
(vertically) because the hip will always be around the middle
of the runner.



Figure 5. Examples of clipped images to be searched for numbers

Next we scan over the small image with a hip-number-
sized window. The scan is influenced by two variables, step,
which determines the number of pixels to shift for each sam-
pling, as well as a ratio which specifies how wide the window
should be as a fraction of the whole image’s width. During
the scan, each region of the image is assigned a probability
from 0 to 1 that indicates how likely it is to contain the hip
number. The region with the highest probability is taken as
the hip number. The probability is produced using a CNN
that was trained on over 1000 data points of hip numbers that
we personally collected. The CNN was created using tensor-
flow and a stencil from the tensorflow website. It consists of
two convolutional layers and one max pooling layer. It does
not need to be particularly deep since the input images are
only 28x28.

Once the hip number is located, it needs to be classified
as an integer. This is accomplished using another CNN. This
CNN was taken from tensorflow and trained on the MNIST
dataset which was also provided by tensorflow. Before a
digit prediction is made by the CNN, the hip number is
adjusted. In the hip number image, a function is applied to
each pixel. The function keeps the current pixel value if at
least one white pixel occurs above the current pixel, below
it, to its left, and to its right. If this doesn’t occur, or if the
current pixel is white, its value is set to 0.95. This serves to
make the background of the image white, while the actual
digit remains black. This is more similar to the MNIST data
so it makes the MNIST trained CNN more accurate in its
predictions.

4. Results

Results of our program can be seen in Figure 7.
The outputted hip numbers for these images are as fol-

lows:
Figure 6: 4, 3, 2, 5, 2, 2
Figure 7: 2, 3, 2, 2

These numbers are about 30-40% accurate from our
analysis. For finish detection, the program is more accurate,
placing a line at about 80% of actual finishes. It also,
however, includes at least one false positive per video, from
our analysis.

Figure 6. An example cross-sectional finish image

Figure 7. Another cross-sectional finish image

4.1. Discussion

Something that we noticed was that our CNN that we
trained to find hip numbers was quite accurate (it located the



hip number within the image about 75 percent of the time),
but our MNIST classification often returned incorrect results.
This is likely due to the discrepancies between the training
data for the MNIST trained CNN which is comprised of hand
written digits, and the noisy hip number digits that we were
attempting to classify. One way that we could potentially
improve our classification would be to add more augmentors
when training our MNIST CNN. The hip numbers are often
very rotated and quite noisy, so it would be good to train it
on digits that were rotated or had some background noise.

5. Conclusion
Overall we are relatively happy with our results. We (kind

of) successfully processed a video of a track race to deter-
mine when each runner finished and what their hip number
was. This system, if refined a little, could be very useful for
our Running Club endeavors and provide a cheap alternative
to expensive FAT systems.

Team contributions

Eliot Laidlaw Eliot helped to collect data and handled the
part of the project that pertained to finding when each
runner finished, outputting the cross-sectional image,
and clipping the finish images to the runner’s body.

Trevor Houchens Trevor helped to collect data, built data
annotation software, annotated data and dealt with num-
ber detection and recognition.


