
Using Task Descriptions for Macro Action Transfer

Trevor Houchens
Brown University

trevor houchens@brown.edu

https://github.com/houchenst/NLPMacroActionTransfer

Abstract

Using reinforcement learning methods to learn how to
perform new tasks from scratch does not closely mimic the
human learning process. As humans, we rely on a wealth
of widely applicable motor skills and high level actions that
allow us to quickly pick up complicated new tasks. Within
the reinforcement learning paradigm, this process of re-
using learned abstract actions is modeled through the com-
monly used options framework. While options have proven
to speed up learning in related tasks, too many options can
lead to slow learning by bloating the action space. This
poses a problem for building truly general agents that are
capable of performing many high level tasks. This work
proposes a method for identifying useful high level actions
using natural language task descriptions, with the goal of
minimizing the time necessary to learn new tasks.

1. Introduction
Humans are capable of learning complex new tasks

remarkably quickly, in large part due to our ability to
transfer skills from previously learned tasks. Consider the
skill of grasping an object. Grasping, in itself, is fairly
complicated and requires positioning the hand correctly
while simultaneously manipulating multiple fingers. In
spite of the difficulty of this action, adults are easily able to
learn new tasks, like hammering nails or swinging a tennis
racket, which rely on being able to grasp an object. The
explanation for this is that humans spend time as infants
learning to pick up and hold objects, and this grasping
ability can then be transferred to new tasks when necessary.

In the reinforcement learning community, there has
been significant work towards learning higher level actions
that can be transferred between tasks instead of being
re-learned each time. This is commonly done using the
options framework, which allows agents to choose to
execute a fixed sub-policy until some end condition is
met [1]. A variety of methods have been proposed to

identify useful options, which range from minimizing the
the cover time - the expected time to visit every node on a
graph during a random walk - of the state space, to finding
state bottlenecks in successful runs, to looking for common
pieces of policy among successful runs [2–4]. While work
in this area has shown that well-chosen options can speed
up learning in related tasks, it has also revealed that too
many options can slow down learning. Since each new
option is a new potential action for an agent, adding a large
number of options leads to a large state space which makes
learning more difficult.

Interestingly, humans do not seem to suffer from slow
learning despite having a large number of abstract actions
at their disposal. This can be attributed to our ability to
identify a small subset of our learned actions which might
be relevant to a new task. Language is commonly used as
a tool to help us identify which actions are relevant and
which are not. For example, if I’m teaching somebody how
to play soccer, I might tell them to ”Run to the ball and
kick it towards the goal.” The verbs ”run” and ”kick” in this
statement correspond to well-known abstract actions that
are useful when playing soccer. The person learning soccer
might be capable of many other high level actions like
writing, speaking, eating, and driving, but they probably
won’t try out these actions because they haven’t been told
that they are relevant.

We aim to mimic this process of relevant skill identifica-
tion within a reinforcement learning framework. High level
skills are learned as action sequences across a set of differ-
ent tasks within the same state/action space. Natural lan-
guage task descriptions, along with action sequences from
successful runs, are then used to train a model to predict
which macro actions are useful for a task based on its de-
scription.

1

2. Related Work

2.1. Options

The options framework has been an established part of
RL for some time now. Options consist of a partial policy,
defined over some subset of states, as well as a set of ini-
tialization states and a set of termination states, specifying
where the option can be executed, and where it must termi-
nate, respectively. There have been many proposed meth-
ods for generating useful options. A common approach is
to identify bottleneck states (i.e. states that are frequently
passed through on successful runs) [4]. Intuitively, these
can be thought of like doorways. Doors are small openings
connecting two rooms, and anybody who wants to move
between the two rooms must stand in the doorway at some
point. Similarly there frequently exist states that must be
passed through on the way to the goal. Another approach is
to identify sections of policy that are shared between agents
trained on similar tasks [2]. For example, if agent 1 has
the policy π1(1) → 4, π1(2) → 3, π1(3) → 8 and agent 2
has the policy π2(1) → 4, π2(2) → 3, π1(3) → 11, then
a useful option might consist of the sub-policy π2(1) →
4, π2(2) → 3 since it is shared by both learned policies.
Further work has gone into identifying options that mini-
mize cover time (the time necessary to cover the state space
via random walk), since the time needed to find a goal state
is related to cover time [3].

2.2. Action Sequences

Similar to options are action sequences. While an option
defines a policy over different states, an action sequence is
a fixed series of actions that will be executed sequentially
over multiple time steps. Action sequences are somewhat
less complex than options since they define a policy that
is independent of state, while options are conditioned on
state. A downside of this is that with stochastic transitions,
a fixed series of actions will not always have the same
effect. Finding useful action sequences is often done by
identifying common sequences of actions among suc-
cessful runs. Some work has successfully selected action
sequences using methods borrowed from compression
since the concept of reducing an series of successful actions
into a shorter list of high level actions is analogous to the
problem of compression [5].

The main inadequacy in the prior work in options and ac-
tion sequence selection is the limit on the number of macro
actions that can be added before learning is slowed due to
the larger state space. By choosing only task-relevant ac-
tions, we should be able to add a much larger set of macro
actions, that can be pruned according to descriptions of
novel tasks.

3. Approach
3.1. Markov Decision Processes

A Markov Decision Process (MDP) is a common format
for RL problems. A typical MDP can be expressed as a
tuple in the following manner:

M = (S,A, T ,R)

• S represents the state space of the problem

• A is the set of actions available to the agent

• T : S ×A× S → R is the transition probability from
a state, action pair into a new state.

• R : S × A × S → R defines the reward given to
the agent from moving from one state to another via a
specific action.

Posed with an MDP, an agent seeks to learn a policy, π,
which defines which action to take in a given state.

π(s) → a

a ∈ A, s ∈ S

We seek to learn a set of macro actions, M , each of
which defines a series of actions to take at subsequent time
steps. These macro actions will then be added to the action
space of our agent, so that it learns a new policy, π∗

π∗(s) → a∗

a∗ ∈ A∗ = A+M, s ∈ S

The objective here is to identify a set of macro actions,
M , that are useful for the tasks at hand, and maximize the
cumulative reward over a large number of time steps.

3.2. Defining a Class of MDPs

One of the more challenging aspects of learning high-
level actions is designing a problem space that is both com-
plex enough to have meaningful high-level actions, and
small enough that common reinforcement learning algo-
rithms can find an optimal policy in a reasonable time. In
this work, we define a new class of MDPs that is similar to
the well-known ”GridWorld”, but with additional complex-
ities. As in GridWorld, an agent moves around a 2D grid.
However, instead of directly picking a direction to move,
the agent must change it’s position or orientation by mov-
ing it’s two rear legs. While GridWorld has a reward for
reaching a goal state, our MDPs give out a reward when
the agent carries an object to the goal state. All other states
get a reward of -1. The agent has the following 10 actions
available to it:

1. Move rear left leg up

2

Figure 1. The initial states of the 11 tasks used. The two rightmost tasks in the second row were not used during macro proposition. The
agent is purple, the object to be carried is red, and the target location is green.

2. Move rear left leg down

3. Move rear right leg up

4. Move rear right leg down

5. Move both rear legs up (causes the agent to move back-
wards, if possible)

6. Move both rear legs down (causes the agent to move
forwards, if possible)

7. Move rear legs clockwise (causes the agent to turn
CCW, if possible)

8. Move rear legs counter-clockwise (causes the agent to
turn CW, if possible)

9. Move forelimbs up (grasps the object if it is in front of
the agent)

10. Move forelimbs down (releases the object if it is
grasped)

This class of MDPs was designed with action abstraction
in mind. There are several obvious abstract actions in this
space that do not exist in GridWorld; walking (making
several leg movements to move forward, turning (making
several leg movements to change orientation), and car-
rying (grasping an object and then moving with it) are a few.

The eleven tasks that are used in this work can be seen
above in Figure 1. As an example, the caption for the task
in the upper left is:

Move west then south to the object. Carry the
object south then east to the target. The object is
far away.

Most descriptions contain cardinal directions which aren’t
directly related to macros, but are somewhat correlated with

whether the agent needs to turn or how far it needs to walk.
Some other captions describe high-level actions directly
with statements like ”Make a sharp turn.”

3.3. Proposing Macros

To propose macros that might reduce our training time,
we can utilize successful action sequences that are gener-
ated from our learned policies. This is accomplished via the
following process:

1. Consider a set of MDPs, T . For each task, t ∈ T ,
we learn an optimal policy, πt, using the SARSA-λ
algorithm.

2. For each policy, πt, we can generate state and action
sequences, S0:n and A0:n−1. We are interested in
successful action sequences, so Sn should be a goal
state. m action sequences are generated per policy.
Since MDPs have stochastic transitions, each action
sequence is not necessarily the same.

3. We now have the following set of m × |T | action se-
quences:

{Ai,t
0:n−1|i ∈ [0,m), t ∈ T}

From this set of action sequences, we count the num-
ber of occurrences of each subsequence with length
between 2 and 10. This count is then scaled by the
length of the subsequence to give us an estimate of the
total number of actions from our original sequences
that we could encode by adding this subsequence as a
macro. The subsequence with the greatest scaled count
is added as a macro. Note that by choosing macros
with this heuristic, we also significantly reduce the dis-
tance between the initial state and the goal states for
each task. This can lead to faster convergence.

4. After a new macro is added, the matching subse-
quences are replaced by this macro action. Then, an-

3

other macro is extracted using the same procedure until
the desired number of macros are obtained.

In this work, 50 macros are proposed from a set of 9
tasks. There are 20 action sequences generated for each
task.

3.4. Using Task Descriptions to Identify Relevant
Macros

As previous work has demonstrated, adding too many
abstract actions can lead to slower learning since it bloats
the action space of the MDP [2]. However, in order to ac-
complish a variety of complex tasks, it is useful to have a
large number of abstract actions available. For each task,
we have a natural language description, d, that explains how
to do the task. We train a model to predict the probability
that each of our proposed macros is the best macro for a
new task, based on the task’s description. Given a set of
proposed macros, M , and a description, d, we define the
model as:

F (d) → [0, 1]|M |.

Our model is implemented as a Naive Bayes classifier.
The task descriptions are tokenized and transformed into a
vector that stores the number of times each word appears
in the description. Each macro corresponds to a ”class”
within the Naive Bayes framework. Each time a macro
appears in the action sequence of a task, the vectorized
task description and the macro are added to the training
data. It is important that another training point is added for
each occurrence of a given macro, and not just once per
sequence.

After the Naive Bayes model is trained, the posterior can
be used to estimate which proposed macro is most likely to
appear in the optimal action sequence of a task described by
a new descriptor.

4. Results

4.1. Training with Different Numbers of Macros

Prior work has shown that adding some abstract actions
tends to speed up convergence, while adding too many can
slow it down. In order to determine the optimal number of
macros to add to our tasks, we re-trained with the top-n
macros, for n ∈ [1, 3, 5, 10, 30, 50]. This was done for
both the full set of macros, and for the model-predicted
macros. The results of using different numbers of macros
can be seen in Figure 2. The number of steps to the goal
state at each episode is shown for a task that was used
to train the model and a novel task. Since most curves
were quite noisy, all plots represent the average of several

trials with smoothing applied over a window of 50 episodes.

The charts clearly indicate that while a using a few
macros converges as fast or faster than using no macros,
having too many macros slows the convergence signifi-
cantly. When 30 or 50 macros were added it took many
more time steps to reach the goal state. Adding 1,3,5 or
10 macros seemed to offer some improvements. Based on
these results, 5 macros was chosen as the optimal number
of macros and was used in further experiments.

4.2. Predicting Macros From Descriptions

Figure 3 shows the results of re-training on one of the
tasks that was used to propose macros, and the results of
re-training on two novel tasks. These results were obtained
by adding the top 5 macros to each of the tasks. For the
state that was used for macro proposal, we took the top 5
macros from the full set of macros, the top 5 macros that
our model predicted would be best, and the top 5 task-
specific macros. The task-specific macros were extracted
in the same way as the set of all macros, except that only
one task was used to generate the training sequences, rather
than 9. We would expect that macros extracted from the
optimal policy of a particular task would be especially
useful when re-training on that task. Therefore, this is a
good benchmark to compare to when we are evaluating the
macros that our model predicted.

We can see that for the task that was seen during train-
ing, the task-specific macros and model-predicted macros
outperform the original macros. For the novel tasks, there
are two very different results. The novel tasks are visual-
ized in Figure 4. For Task 6, the model-predicted macros
performed similarly to the original macros, and both out-
performed the agent trained with no macros. For Task 9,
the model-predicted macros did poorly relative to the orig-
inal macros, and both of these performed worse than the
agent trained with no macros.

4.3. Macros By Keyword

By using our Naive Bayes model to suggest macros from
a single word, we can see which macros are associated with
that word. In the training tasks, the phrase ”sharp turn” was
used to describe problems where the agent was required to
make a U-turn around an obstacle. When the model was
used to propose macros for the keyword ”sharp”, the first
long (length > 5) macro corresponded to a partial U-turn.
This macro is shown in Figure 5. It causes the agent to
move forward, turn clockwise, and then move two spaces
forward. There were a number of smaller macros proposed
before this macro, but this can be attributed to the fact that
it becomes increasingly uncommon to repeat longer action
sequences due to the stochastic nature of MDPs.

4

Figure 2. These graphs show the number of time steps to get to the goal state of an MDP during each episode of learning. The top row
shows results from one of the tasks used to generate the macro proposals, and the bottom row shows results on a novel task (Task 6).

Figure 3. On the left are reward curves for one of the tasks used to train the macro prediction model. On the right are two novel tasks (Task
6: middle, Task 9: right)

4.4. Hierarchy of Macros

5. Discussion
The goal of this project was twofold, to learn useful ac-

tion sequences, and to predict the best action sequences5

Figure 4. The two novel tasks. On the left is Task 6. On the right is Task 9.

Figure 5. The first macro longer than 5 actions that was suggested for the keyword ”sharp”. This macro completes part of a u-turn, which
is common in tasks that have the phrase ”sharp turn” in their description.

given a task description.

5.1. Learning Action Sequences

We were successful in learning action sequences that
helped our RL algorithm converge to an optimal policy in
fewer episodes. In Figure 2, we show that we are able to
converge more quickly with macros than without macros
on two different tasks. This result was expected, as there
are some very commonly repeated patterns, like walking,
that occur in all tasks. By adding a ”walking” macro, the
policy that the agent has to learn can be less complex, since
the macro can be executed, rather than sequentially taking
each primitive action individually.

5.2. Macro Action Transfer

The second objective of this work was to predict which
macros, from a set of proposed macros, would be relevant
to a task, based on a natural language description. For
one of the tasks used to generate macro proposals, the
model-predicted macros seemed to perform better than the
task-specific macros, originally-proposed macros, and no
macros (Figure 3). However, some of this can be attributed
to noise, since the task-specific macros should be the most
relevant macros for a given task, and it is unlikely that the
model-predicted macros truly outperformed these.

The performance of the model-predicted macros on the
two novel tasks was less straightforward (Figure 3). On
Task 6, the model-predicted macros and the original macros
performed similarly well, and both outperformed the agent

6

trained with no macros. On Task 9, no macros performed
the best and the model-predicted macros performed the
worst.

The results indicate that predicting macros from task
descriptions using a learned model was not more effective
than simply extracting the best macros from a set of action
sequences. This doesn’t mean that abstract actions can’t
be predicted from task descriptions in general. These
results can be attributed, in part, to the number of tasks
that were used and the formulation of our abstract actions
as action sequences. The goal in predicting macros from
task descriptions was to be able to maintain a large set
of useful abstract actions that could be narrowed down
for specific tasks. Since it is difficult to learn long action
sequences that are useful, we were limited to modeling
more low-level actions. The space of low-level actions is
inherently smaller than that of high-level actions and we
didn’t have very many tasks to begin with, therefore it is
likely that there were not very many useful macro action
sequences. Most of these useful sequences were likely in
the original macro proposals. Predicting relevant macros
using task descriptions would probably be most effective
when there are a large number of high-level actions that are
useful for different tasks, something that we did not have.

The number of tasks used to train the Naive Bayes
classifier also likely contributed to the lackluster results
of the predicted macros. Since most words in the task
descriptions occurred at most a few times, it was easy for
the classifier to overfit or make false connections between
words and macros. When predicting macros for novel tasks,
this could lead to suggesting poor macros that had some
correlation with the description words, but no meaningful
connection.

The decision to model the relationship between task de-
scriptions and useful macros using a Naive Bayes model
was influenced by the limited number of tasks available.
While treating a sentence as a bag of words loses a lot of
information, the bias it introduces makes it less prone to
overfitting than a more complex model. With more tasks
and an abstract action formulation that allows for higher-
level actions, like options, it might make more sense to use
an LSTM or a Transformer. The results of our macro pre-
diction from a keyword suggest that while a Naive Bayes
model isn’t perfect, it was able to correctly model some of
the connections between the task descriptions and macros
(Figure 5).

6. Conclusion
We have shown that it is possible, and straightforward,

to extract action sequences from optimal policies that can

speed up learning when added to the action space as macros.
The results of this work suggest that learning to predict use-
ful abstract actions using a description of a task is a viable
approach, even though it was not very effective within our
framework. Future work should consider modeling abstract
actions using options, using a larger set of tasks, and ana-
lyzing how task descriptions are created.

References
[1] S. et. al., “Between mdps and semi-mdps: A framework for

temporal abstraction in reinforcement learning,” Artificial In-
telligence, vol. 112, pp. 181–211, 1999. 1

[2] M. Pickett and A. Barto, “Policyblocks: An algorithm for cre-
ating useful macro-actions in reinforcement learning,” 2002.
In: ICML (2002). 1, 2, 4

[3] Y. Jinnai, “Discovering options for exploration by minimizing
cover time,” 2019. In: ICML (2019). 1, 2

[4] O. Simsek, “Skill characterization based on betweenness,”
2008. In: NeurIPS (2002). 1, 2

[5] P. T. Francisco Garcia, Bruno da Silva, “A compression-
inspired framework for macro discovery,” 2019. In: AAMAS
(2019). 2

7

	. Introduction
	. Related Work
	. Options
	. Action Sequences

	. Approach
	. Markov Decision Processes
	. Defining a Class of MDPs
	. Proposing Macros
	. Using Task Descriptions to Identify Relevant Macros

	. Results
	. Training with Different Numbers of Macros
	. Predicting Macros From Descriptions
	. Macros By Keyword
	. Hierarchy of Macros

	. Discussion
	. Learning Action Sequences
	. Macro Action Transfer

	. Conclusion

